沸石等物理吸附剂具有适用范围广、成本低、操作简单、吸附剂循环复用便捷等诸多优点,因而在碳捕集领域备受青睐。周瑜教授介绍道:“但是既有的沸石吸附剂面临着吸附容量不高、气体分离比低、不耐水汽、脱附再生能耗高、粘结剂成型后性能下降等方面的挑战。”
实验显示,团队合成的含铁丝光沸石吸附剂在室温298K、1个大气压条件下,其吸附量为219立方厘米每立方厘米,是迄今报道的最高值,同等条件下,工业基准13X沸石吸附剂的最高吸附量为156立方厘米每立方厘米。更重要的是,所得材料对氩气、氮气、甲烷等表现出良好的筛分能力,其分离比13X沸石吸附剂高出多个数量级。
“通常在分离过程中,实际气体中都有水汽,有的吸附剂遇水不稳定,大部分吸附剂‘亲水’故而分离性能受水汽干扰严重,常常需要先干燥再吸附,我们的含铁丝光沸石吸附剂分离性能不受水汽干扰,且循环使用优异。”周瑜教授介绍。
就能耗而言,当下的工业基准13X沸石吸附剂在分离CO2/CH4(50/50)混合气时回收一公斤二氧化碳需要消耗0.97兆焦能量,而我们的吸附剂每吸附一公斤二氧化碳仅需消耗0.7兆焦能量。说起回收率高、能耗低的“利好”,王军教授很是开心:“在纯度相同的情况下,我们吸附剂对CO2的回收率大于95%,CH4的回收率能从61.9%提升到96.9%。”
早在十五年前,课题组成员就开始了这类沸石材料研究,开逐渐形成独特的“酸水解”路径合成方法。采用这种工艺创制的含铁丝光沸石吸附剂较之以前有两大突破,一是变原来的粉状为高机械强度块状,省却了后续成型工艺,具有典型绿色化工特点;二是独特的孔道结构实现了高效碳捕集。
“我们采用所发展的‘酸水解’独特合成路径,经过千百次反复优化,加之现代最先进仪器支撑的性能测试和结构解析,才最终取得这样的优异结果。”据周瑜介绍,二氧化碳直径为0.33纳米,他们的沸石吸附剂孔口尺寸便是0.33-0.34纳米,但并不影响固有的较大孔容,如此一来,此孔径便成了二氧化碳“专属”捕集孔。
这一研究是碳捕集领域的重大突破,具有明显的实际应用潜力,开拓了杂原子沸石分子筛在气体吸附分离领域的新应用。“碳捕获是降低二氧化碳排放、实现分离回收和综合利用的有效途径,对于实现碳达峰和碳中和目标具有重要意义。”据周瑜介绍,此项研究成果可应用于发电厂燃烧后的二氧化碳捕集、天然气净化、沼气纯化等方面。
通讯员 朱琳 杨芳
扬子晚报/紫牛新闻记者 杨甜子
校对 徐珩
编辑 : 张丽
更多内容请打开紫牛新闻, 或点击链接